Forwarding indices of folded n-cubes
نویسندگان
چکیده
For a given connected graph G of order n, a routing R is a set of n(n − 1) elementary paths specified for every ordered pair of vertices in G. The vertex (resp. edge) forwarding index of a graph is the maximum number of paths of R passing through any vertex (resp. edge) in the graph. In this paper, the authors determine the vertex and the edge forwarding indices of a folded n-cube as (n− 1)2n−1 + 1− ((n+ 1)/2) ( n ⌊ n+1 2 ⌋) and 2n − ( n ⌊n+1 2 ⌋), respectively. © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
The forwarding indices of augmented cubes
For a given connected graph G of order n, a routing R in G is a set of n(n− 1) elementary paths specified for every ordered pair of vertices in G. The vertex (resp. edge) forwarding index of G is the maximum number of paths in R passing through any vertex (resp. edge) in G. Choudum and Sunitha [S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2002) 71–84] proposed a variant of the hyperc...
متن کاملHyper-tubes of hyper-cubes
Hyper-tubes consisting of hyper-cubes of n-dimensions were designed and formulas for substructures of vary dimensions established.
متن کاملThe Forwarding Indices of Graphs -- a Survey
A routing R of a given connected graph G of order n is a collection of n(n−1) simple paths connecting every ordered pair of vertices of G. The vertexforwarding index ξ(G,R) of G with respect to R is defined as the maximum number of paths in R passing through any vertex of G. The vertex-forwarding index ξ(G) of G is defined as the minimum ξ(G,R) over all routing R’s of G. Similarly, the edge-for...
متن کاملWirelength of 1-fault hamiltonian graphs into wheels and fans
In this paper we obtain a fundamental result to find the exact wirelength of 1-fault hamiltonian graphs into wheels and fans. Using this result we compute the exact wirelength of circulant graphs, generalized petersen graphs, augmented cubes, crossed cubes, mőbius cubes, locally twisted cubes, twisted cubes, twisted n-cubes, generalized twisted cubes, hierarchical cubic networks, alternating gr...
متن کاملThe (non-)existence of perfect codes in Lucas cubes
A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 145 شماره
صفحات -
تاریخ انتشار 2005